Abstract

This paper explores the environmental correlates of telemedicine. Empirical analysis of telemedicine use in Illinois counties reveals that the service is patronized in large numbers by collectivists, people who value collective responsibility over individual rights.

Introduction

Interest in telemedicine has increased during the Covid-19 pandemic; a search for the title “telemedicine” in Google Scholar resulted in 2,310 publications for the period 2020-2021. However, most of the social science research on telemedicine has focused on the characteristics of the telemedicine user; little or no research has explored the contextual factors related to telemedicine use. Six decades ago Lewin (1951) posited that behavior (B) is a function of both person (P) and environmental (E) variables, $B = f(P, E)$. This paper is an attempt to explicate the E factors related to telemedicine use. Specifically, it empirically tests environmental variables such as culture for association with telemedicine use. The geographical scope of the study is Illinois and the unit of analysis is the county.

1 Professor, Illinois Institute for Rural Affairs, Western Illinois University.
3 The actual search was phrased: “allintitle: telemedicine”.
Conceptual Framework

The framework is based on a set of four principles: adaptation principle, cycling of resources principle, interdependence, and succession principle. These principles are discussed below and a set of propositions are deduced from them for empirical analysis.

The adaptation principle is about assessment of social context, described using broad economic trends and cultural beliefs surrounding the definitions of problems and their solutions. In Illinois, cultural traditions differ among counties; citizens' voting pattern suggests that some counties could value individual rights over collective responsibilities; for the residents of these counties, viewing telemedicine as a tool for preventing the spread of Covid-19 among members of the community may not be of appeal. Furthermore, public opinion about Covid-19 in these ‘individualistic’ counties could be either neutral or positive, not negative as it would be for a ‘collective’ culture. Thus,

\[P_1: \text{Telemedicine use will be higher in counties that value collective responsibilities.} \]

\[P_2: \text{Telemedicine use will be higher in counties with negative opinion about Covid-19.} \]

It has been suggested that different types of economies are associated with different kinds of behavior. For example, societies whose economies are predominantly driven by accumulating and caring for food resources tend to stress the development of traits such as responsibility and obedience in their residents, whereas hunting and fishing societies tend to emphasize self-reliance. Telemedicine is driven by information and communications technology (ICT); since communities that provide ICT access (for example, broadband access) are likely to be the population centers for tech-savvy individuals.

8 Republican voters tend to be individualistic; see, for example, Bourgeois, D. Y. (2002). The politics and values of individualists and collectivists: A cross-cultural comparison.

10 Same as footnote 2.

P₃: Telemedicine use will be higher in counties with broadband access.

Also, since the manufacturing sector is a producer and user of innovation, it is postulated that:

P₄: Telemedicine use will be higher in counties with more manufacturing employment.

Cycling of resources principle highlights how resources in a social system are used to achieve individual and community goals. At an individual level, people with chronic illness such as heart conditions have to learn about healthcare resources that are essential for survival; access to telemedicine is one such knowledge.

This kind of reasoning suggests that,

P₅: Telemedicine use will be higher in communities with more chronically ill population.

The principle of cycling of resources also suggests that communities will think about ways in which the range of available resources can be expanded. One such tactic would be, for example, hospitals in the community to offer telemedicine services for patients. Logically, this is likely to happen in larger communities with a variety of healthcare services such as hospitals and medical clinics. Hence,

P₆: Telemedicine use will be higher in large population centers.

The *interdependence principle* is based on the idea of system dynamics, changes to one part of a system could impact the other components of the system. Research on spread of Covid-19 in Illinois suggests that as a variable, "Covid-19 spread" explains significant amount of variability in telemedicine use, so the proposition:

P₇: Communities in which the growth rate of Covid-19 is high will witness high telemedicine use among its residents.

Related to the proposition on Covid-19 growth and use of telemedicine is the idea about social interactions of people; for example, that people may travel less to attend social functions, or eat out in restaurants, for fear of being infected by the virus. A measure of the intensity of social interaction at the county level is Google’s Mobility index; this index is expected to be lower in communities with high telemedicine use. Thus,

P₈: Mobility index will be low in communities with high telemedicine use.

12 Same as footnote 11.
14 See, for example, Athiyaman, A. (2016). Marketing strategy recommendations for FQHCs. IIRA, Macomb, IL: Working paper.
15 Same as footnote 4.
An unintended consequence of telemedicine use could be loss of jobs in traditional healthcare settings, for example, in medical clinics that offer only face-to-face consultations. According to a latest healthcare industry report, healthcare providers such as primary care physicians lag in the adoption of digital services16. Thus, P\textsubscript{9}: Higher the use of telemedicine in a community, greater is the job loss in traditional healthcare settings in the community.

Finally, the principle of succession suggests exploration of changes in community structure, for example, employment shifts from manufacturing to services, to understand variations in behavior among residents (for example, student enrolment in STEM courses). A structural factor that is salient for adoption of telemedicine is scarcity of medical professionals in the community17. Another factor would be investments in ICT in the community by state and federal agencies and programs. On the latter, there is evidence that disproportionately low rates of resources per capita are directed to rural residents18.

These premises suggest that:

P\textsubscript{10}: Use of telemedicine will be higher in communities with declining rates of healthcare providers.

P\textsubscript{11}: Telemedicine use will be lower in rural counties.

Methodology

A variety of data were used to explore the hypothesized associations between telemedicine use and county environment. The operational definitions of the predictors or the independent variables and sources of data are given in Table 1.

16 The BCG’s digital acceleration index places healthcare at the bottom of sectoral rankings, healthcare is better only than public sector institutions; see BCG (2020). How digital divide healthcare providers.

17 See IBISWorld (2020). *Industry Outlook: Telehealth Services*, OD5775, August.

Table 1: Variables, Operational Definitions, and Data Sources

<table>
<thead>
<tr>
<th>Variable</th>
<th>Operational Definition</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collective culture</td>
<td>Proportion of vote for the Democratic candidate in the 2020 presidential election.</td>
<td>Scraped from Github, election data.</td>
</tr>
<tr>
<td>Individualistic culture</td>
<td>Proportion of vote for the Republican candidate in the 2020 presidential election.</td>
<td></td>
</tr>
<tr>
<td>Sentiment about Covid-19</td>
<td>Twitter analysis of Covid-19 sentiments, by county.</td>
<td>Author’s own software was deployed on Twitter platform to scrape tweets.</td>
</tr>
<tr>
<td>Broadband access</td>
<td>Number of households with broadband access of any kind, for example, fiber.</td>
<td>ACS, 2019, 5-year estimates, Table S2801.</td>
</tr>
<tr>
<td>Manufacturing employment</td>
<td>Proportion employed in the manufacturing sector, by county.</td>
<td>ACS, 2019, 5-year estimates, Table DP02.</td>
</tr>
<tr>
<td>Covid-19 spread</td>
<td>Daily growth rate of the virus computed using exponential growth: (\text{Base} \times e^{rt})</td>
<td>Scraped from Github, Covid-19 dataset.</td>
</tr>
<tr>
<td>Mobility of residents</td>
<td>Google mobility index.</td>
<td>www.google.com/covid19/mobility.</td>
</tr>
<tr>
<td>Job loss in healthcare</td>
<td>Changes in healthcare employment; 2020 quarters 1 and 2 compared with 2019 quarters 1 and 2</td>
<td>www.bls.gov/cew/</td>
</tr>
<tr>
<td>Changes in healthcare provider numbers.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The criterion or dependent variable, number of telemedicine users in Illinois counties, were sourced from a research on economic value of telemedicine. Standardized mean differences, d ratio, and product moment correlations were used to test the hypotheses.

The d ratio is the difference between the group means, for example, average number of telemedicine users in metro versus nonmetro, divided by an estimate of the population standard deviation. The norm in statistics is to interpret ds of 0.20, 0.5, and 0.8 as small, medium, and large, respectively.

We express ds as point biserial, product-moment correlations. Hunter and Schmidt recommend its use over d because it can then be inserted into a correlation matrix and treated like an interval level variable.

Results and Discussion

The law of continuity highlights the stability of cause and effect, to understand what will happen, we have only to examine what is happening. Telemedicine has grown exponentially during the Covid-19 pandemic; the AMA claims approximately 5000% increases in usage of the service during 2020.

Variableness in events such as telemedicine use are merely the results of new combinations of existing factors or causes; for example, the Center for Medicare Services (CMS) injected $8bil in 2020 to encourage telemedicine use among Medicare beneficiaries. This “incentive” and the spread of Covid-19 in the nation could have combined to propel or grow telemedicine services. Although it is not possible to predict with certainty the future of telemedicine because of the complexity of the factors involved, it is possible to speculate or model future tendencies and possibilities for the service. Towards this end we empirically tested the environmental correlates of telemedicine use; the principles of adaptation, cycling of resources, interdependence, and succession provided the frame to deduce hypotheses about the correlates.

Table 2 shows the results of hypothesis testing; seven of the 11 hypotheses were confirmed by the empirical analysis. The adaptation principle suggests the need to consider cultural factors in telemedicine use. Based on the notion that political affiliation is an indicator of culture, we tested the hypothesis that telemedicine use will be high in counties that voted for the democratic presidential candidate in the 2020 presidential election; democratic vote is an indicator of collectivist culture. This hypothesis gained support in statistical analysis.

Of the four disconfirmed predictions, three deal with the healthcare sector: (1) telemedicine use is independent of

20 Same as footnote 2.
24 Same as footnote 2.
25 Same as footnote 5.
26 Same as footnote 8.
healthcare provider numbers in the region, (2) use of telemedicine does not reduce jobs in traditional healthcare settings such as medical clinics, and (3) the magnitude of chronically ill population in the county does not predict telemedicine use.

Table 2: Correlation of Predictors with the Criterion, Telemedicine Use

<table>
<thead>
<tr>
<th>Variable</th>
<th>Expected Association with Telemedicine Use</th>
<th>r; (0.95 CI)</th>
<th>Results of Hypothesis Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collective culture</td>
<td>+</td>
<td>0.88; (CI = 0.68, 0.98)</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Individualistic culture</td>
<td>-</td>
<td>-0.55 (CI = -0.75, -0.35)</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Sentiment about Covid-19</td>
<td>-</td>
<td>-0.6 (CI = -0.79, -0.40)</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Broadband access</td>
<td>+</td>
<td>0.2 (CI = 0.004, 0.39)</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Manufacturing jobs</td>
<td>+</td>
<td>-0.1 (CI = -0.29, 0.09)</td>
<td>Disconfirmed</td>
</tr>
<tr>
<td>Chronically ill</td>
<td>+</td>
<td>0.1 (CI = -0.1, 0.29)</td>
<td>Disconfirmed</td>
</tr>
<tr>
<td>Pop. Density</td>
<td>+</td>
<td>0.95 (CI = 0.78, 0.98)</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Covid-19 Growth</td>
<td>+</td>
<td>0.43 (CI = 0.23, 0.62)</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Mobility26</td>
<td>-</td>
<td>-0.39 (CI = -0.58, -0.19)</td>
<td>Confirmed</td>
</tr>
<tr>
<td>Job loss in healthcare</td>
<td>-</td>
<td>-0.03 (CI = -0.22, 0.17)</td>
<td>Disconfirmed</td>
</tr>
<tr>
<td>Changes in healthcare provider numbers27</td>
<td>-</td>
<td>0.11 (CI = -0.08, 0.30)</td>
<td>Disconfirmed</td>
</tr>
<tr>
<td>Rural region</td>
<td>-</td>
<td>-0.24 (CI = -0.44, -0.04)</td>
<td>Confirmed</td>
</tr>
</tbody>
</table>

So, what is the prediction for the future of telemedicine? Regions with high population density will continue to use telemedicine. If Covid-19 persists, telemedicine will be used; use of the service will be more in collectivist cultures.
Summary and Conclusion

This paper is an attempt at explaining the uptake of telemedicine in Illinois counties using the ecological principles of adaptation, cycling of resources, interdependence, and succession. Results of empirical analysis suggests that the contextual nature of telemedicine is:

- a densely populated region, with collectivist culture experiencing high Covid-19 growth, and a population that harbors negative opinions about Covid-19 (for example, it is a life-threatening illness).

In conclusion, the details of the future of telemedicine is difficult to predict, but the outcomes of the general principles given in this paper may be predicted. This is what we did, showed that environment plays a very important part in diffusion of telemedicine in Illinois.